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We consider a one-dimensional lattice of expanding antisymmetric maps
[&1, 1] � [&1, 1] with nearest neighbor diffusive coupling. For such systems
it is known that if the coupling parameter = is small there is unique stationary
(in time) state, which is chaotic in space-time. A disputed question is whether
such systems can exhibit Ising-type phase transitions as = grows beyond some
critical value =c . We present results from computer experiments which give
definite indication that such a transition takes place: the mean square magneti-
zation appears to diverge as = approaches some critical value, with a critical
exponent around 0.9. We also study other properties of the coupled map system.

KEY WORDS: Chaotic systems; coupled map lattices; phase transitions;
Ising-type transitions.

1. INTRODUCTION

Lattice dynamical systems (LDC) proved to be useful models in the study
of many physical, chemical, hydrodynamical and biological systems.(1, 2)

The studies of LDS allowed to make some serious steps towards a better
understanding of such phenomena as space-time chaos, space and space-
time intermittency and pattern formation. An important step was the exact
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definition of space-time chaos (space-time mixing), (3) a property which has
been proved to be shared by some classes of LDS.(3�6)

The thermodynamic formalism developed in ref. 3 and later extended
in refs. 4�8 allowed to build a bridge between hyperbolic LDS and the
lattice spin systems of statistical mechanics. Especially, it was proposed in
ref. 3 that the existence of a unique invariant Gibbs measure with absolutely
continuous finite-dimensional marginals in lattices of weakly interacting
(uniformly) hyperbolic local maps corresponds to the absence of phase
transitions for high temperatures in the corresponding lattice spin system of
statistical mechanics. Thus it has been suggested in ref. 3 that the phase
transitions in those systems of statistical mechanics, which may appear in
the range of low temperatures, could be interpreted as appearance of
coherent structures from the state of space-time chaos when the strength of
spatial interaction (order parameter) exceeds some critical value.

Since then many publications dealing with this exciting problem have
appeared (see e.g., refs. 9�11). The great majority of the papers are based
on computer experiments. There are however a few papers(15, 17) in which
some rigorous results are proved, which confirm the phenomenology
suggested in ref. 3.

It is worth to mention, in passing, that the word ``phase transition''
has now become fashionable and is widely used instead of the ``honest''
word ``bifurcation,'' even when no thermodynamic formalism has been
constructed. One should actually be very careful in using the term ``phase
transitions'' for dynamical systems. We think that the relevant approach is
that suggested in ref. 15, which we outline below.

``Phase Transitions'' deal with equilibrium states for a system of
statistical mechanics. Therefore, the corresponding notion for dynamical
systems must deal with invariant measures, with respect to the dynamics.
However, a dynamical system with chaotic behavior usually has infinitely
many (actually a continuum) of invariant measures. Therefore, the crucial
question is to determine which invariant measures are relevant. The ther-
modynamic formalism developed for hyperbolic dynamical systems(18, 19)

qualifies such measures as Gibbs measures. It is now widely accepted that
the SRB measures form a relevant class of invariant measures for hyper-
bolic dynamical systems. Accordingly, the recent paper(17) suggests that the
notion of phase transition in spatially extended dynamical systems should
deal with SRB measures. There are at least two objections to such approach.
First of all, in principle, phase transitions may occur not only in hyperbolic
dynamical systems, whereas the notion of SRB measures is defined only for
hyperbolic systems. Secondly, at the point of phase transition a dynamical
system may loose hyperbolicity, so that the notion of SRB measures would
lose its sense at the critical point.
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The approach suggested in ref. 15, instead, does not have such
deficiencies. Moreover, it contains the one suggested in ref. 17 as a special
case, when the notion of SRB measure has sense before as well as after the
phase transition. This approach deals with the class of the stable invariant
measures, which are limiting (under the dynamics) points for some class of
natural non-equilibrium (non-invariant) measures. Such class of invariant
measures for extended dynamical systems is formed by the measures which
have finite-dimensional absolutely continuous marginals.(3, 15) The approach
suggested in ref. 15, besides its generality and its advantages for the mathe-
matical study of spatially extended dynamical systems, is also very natural
for numerical studies and the interpretation of the outcoming results.
Indeed, in numerical studies, which always deal with finitely extended
systems, one usually considers the evolution of a phase volume (Lebesgue
measure).

Therefore in the present paper we follow the approach of ref. 15, which
states that there is a phase transition at the critical value pcr , of the order
parameter p if for p<pcr all measures in some class of ``natural'' non-
invariant measures M converge to a measure m, whereas for p>pcr a
massive piece (at least) of the space of these measures begins to converge
instead to some other measure(s), (m1 ,..., mk), k�1, which do not (all)
coincide with m.

Since a possible relation between the appearance of coherent struc-
tures in extended dynamical systems and phase transitions in systems of
statistical mechanics was discovered, there were several attempts to find
out a model of extended dynamical system which exhibit transitions similar
to the most popular phase transitions in statistical physics, those of Ising
model. There was first a result by Miller and Huse, (13) which considered a
two-dimensional coupled map lattice, for which they claimed to obtain a
phase transition similar to the one in Ising models. However, the critical
indices for this coupled map lattice turned out to be different from the ones
in Ising model.(16) The same local maps with diffusion coupling but with
sequential, rather than simultaneous, update, allowed to obtain, for the
corresponding coupled map lattice, the same critical indices as for the Ising
model.(16)

Another conjecture suggested in refs. 3 and 8 claims that phase transi-
tions in Lattice Dynamical Systems may occur already in one dimension.
Indeed, time dynamics provides the second dimension, which adds to the
spatial dimension, in the corresponding system of statistical mechanics
generated by the thermodynamic formalism. Since that time the existence
of phase transitions in one dimensional lattice systems has been demon-
strated numerically and analytically.(9�17) However, the most convincing
result to show the correctness of this claim would be an example of one-
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dimensional lattice dynamical system, which shows a phase transition
similar to those of Ising models.

In the paper(14) we proposed that Ising-type transitions can take place
in one-dimensional lattices of coupled ``chaotic'' maps, as the diffusive
coupling constant grows away from 0. We argued that the critical value of
the diffusive parameter for which such transition takes place is determined
by a balance between local entropy production and coupling, which is
expressed by the behavior of the Lyapunov dimension, namely by a dip in
the plot of the Lyapunov dimension versus coupling strength, in the
proximity of which the critical value should be found.

We consider here a new local map, which can be viewed as an
``improved version'' of the local map in the paper.(14) In fact the CML
studied in that paper does not show an Ising-type transition. An a priori
guess of the critical point is obtained as in ref. 14 by looking at the plot of
the Lyapunov dimension vs the diffusive coupling constant =.

For the new map we get a clear divergent behavior of the square
magnetization near the critical point, and we are able to produce a fairly
precise value for the critical exponent. Our results are, as we believe,
definite evidence, as much as it is possible with computer experiments, of
the occurrence of Ising-type transitions in one-dimensional CML maps.

We also present a thorough investigation of the behavior of the system
as the coupling constant = varies from 0 to values exceeding the critical
value =cr0.58. We find evidence of a variety of behaviors, which shows once
more how rich the phenomenology simulated by CML systems can be.

We use throughout periodic boundary conditions.

2. THE MAP AND ITS PROPERTIES

The map f : [&1, 1] � [&1, 1] is continuous, antisymmetric and
piecewise linear. Its analytic expression on the positive semi-interval is:

f (x)={
5x
& 8

3x+ 4.6
3

8
3x& 3.4

3

& 11
2 x+5.4

x # [0, 0.2]
x # [0.2, 0.5]
x # [0.5, 0.8]
x # [0.8, 1]

(1.1)

As the slope is always larger than 1, the map is expanding. A plot of
the map is given in Fig. 1.

We consider CML's on the one-dimensional lattice generated by a dif-
fusion-type coupling of local (point) dynamical systems given by the above
map, with periodic boundary conditions. The phase space of our CML is

0N=[x=[xj # [&1, 1] : j # ZN]] (1.2)
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Fig. 1. Plot of the map.

where ZN=Z�(NZ) denotes the integers modulo N. On 0N we consider the
maps 8= and F with values in 0N and defined as follows:

(8=x) j=(1&=) xj+= :
k # ZN

a | j&k| xk (1.3a)

Here 0�=�1 and �j a | j |=1. The map F is defined as

Fk(x)= f (xk)

and the dynamics of the coupled map lattice is given by the composition

H N
= =8= b F (1.3b)
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which maps 0N into itself. H= represents the subsequent action of the local
map F and the coupling 8= on 0N . Component-wise:

(H N
= x)k=(1&=) f (xk)+= :

j # ZN

a | j&k| f (xj ) (1.3c)

We consider only nearest neighbour diffusive coupling, for which
(1.3a) is specified as

(8=x)k=(1&=) xk+
=
2

(xk&1+xk+1) (1.4)

It is worth to mention that practically all numerical studies of CML's were
done for nearest neighbor coupling.

In accordance to a current jargon, a local variable xj will sometimes
be called ``spin.''

One can see form the plot in Fig. 1 that, in addition to the origin, the
map f has three positive unstable fixed points, and three negative ones,
antisymmetric to them. Moreover if N is even we have a fixed point of H N

=

of space period two and of the type ..., +a, &a, +a, &a,..., if a is a solution
of the equation

(1&2=) f (a)=a

In addition to the solution a=0, which is present for all = # [0, 1], we
have other solutions, which come, by antisymmetry, in pairs: three pairs of
solutions for 0<=<0.1, and only one pair for 0.1�=<0.4. The smallest
positive solution, which is there in the whole range 0�=<0.4 is

a1(=)=
4.6&9.2=
11&16=

The other solutions are

a2(=)=
3.4&6.8=
5&16=

, a3(=)=
5.4&10.8=
6.5&11=

All solutions are unstable in the whole range of =.
The time evolution on 0N with initial condition x� =[x� k : k # ZN] is

the sequence of vectors: [x(t) : t=0, 1,...] with xk(0)=x� k and xk(t+1)=
(H N

= x(t))k .
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For == 1
2 it is easy to check that the system has a ``first integral:'' the

phase point moves on the submanifold of equation �k odd xk(t)=�k even xk(t).
This may explain why correlations increase near this point.

3. BEHAVIOR FOR SMALL COUPLING

Throughout the paper N, the number of the space points, will be
called ``length'' of the periodic chain, and R will denote the sample size, i.e.,
the number of independent CML systems with length N that are simulated.
Unless otherwise stated the initial values of the spins [xk(0) : k # ZN] are
taken at random, with uniform distribution on [&1, 1], independently for
each k and for each sample.

For smooth maps, if the coupling constant = is small we know that for
the infinite system space-time chaos holds, i.e., there is an invariant
measure which is mixing w.r.to space-time shifts.(3�6) The result is believed
to hold also for piecewise smooth maps such as the one we consider here.

Already for values of = of the order of 10&2 some kind of space struc-
ture appears. Namely, for N even, after some transient time, the signs of the
spins settle on a periodic space pattern of period 2, constant in time (i.e.,
of time period 1). (For N odd there is a single defect.) This is connected
to the presence of the unstable space periodic fixed points discussed in the
paragraph above. In fact, by getting close to one of those solutions or
oscillating among them, the system reaches eventually the region where
neighboring spins have opposite signs, which appears to be stable in the
given = range. More precisely, for large t neighboring signs are opposite
and there is an interval I=(x& , x+), depending on =, with 0<x&<0.04,
5.2�5.5<x+<x

*
=5.4�5.5, such that for all k, |xk(t)| # I. (Here x

*
is the 0

of the map, i.e., f (x
*

)=0, and 0.04 and 5.2�5.5 are the points at which
the map has the same value 0.2 of the central local minimum.) As (1&=)
infx # I f (x)>=, one can see that if neighboring signs are opposite at time t,
then, for all k, sign xk(t)=sign xk(t+1).

What happens can actually be made clear by some simple rigorous
analysis. Let m(=)=inf[ f (x&), f (x+)]=infx # I f (x). The stability of the
period 2 pattern for the signs holds if the following inequalities are true

(1&=) m(=)�x&+=, x
*

&x+�=m(=)+x
*

&1+=

In the second inequality we can replace m(=) by f (x+), computed by the
expression on the last line of formula (1.1). This gives the condition
0�x

*
&x+�(=&=0)�(1&5.5=), with =0=1&x

*
=0.018, i.e., we find a

threshold =�=0 , very close to the observed one. By some tedious computa-
tions one can actually find points x\ , depending on =, for which the
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Fig. 2. Fraction of sign changes vs =. N=400, R=10.

inequalities above hold for =�=1 :=0.4�17.5. As the conditions stated are
only sufficient, there is no contradiction with the data below.

Figure 2 shows the behavior in the range 0.018�=�0.0325 of the frac-
tion of sign changes between neighboring spins at fixed time (i.e., number
of such changes over N ), for N=400 and a sample of R=10 independent
cases. Error bars correspond to one standard error. The data refer to the
stationary state, after a transient time of 8_107 units. In the range of =
where the fraction of the sign changes is 1, once the stationary regime is
established, the sign of each spin remains constant in time, as predicted by
the analysis above, though the spin itself varies over the whole interval \I
described above.

It is well known(1, 2, 9, 10, 12, 15) that in the range of spatial interactions
above space-time chaos (small =) stable oscillations often appear with
period two in space and in time However the local maps considered in
those papers always have only two branches of monotonicity. Our local
map with many monotonicity branches rather produces several solutions
with space-time periods two-one and two-two which all are unstable. So in
this range of spatial interactions we have instead large variations in time of
the values of local variables, with locally fixed signs, as described above.

As = grows the periodic sign structrure breaks down, and ``islands'' of
positive and negative spins begin to appear, their size growing with =. In
the whole range 0�=<=c , where the critical =, as explained below, is
=cr0.58, we have evidence of a unique stationary state (invariant measure)
which is space homogeneous and attracting for all initial data, except for
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the region of spin locking just described where we have two measures
which go into each other by a space shift.

4. BEHAVIOR NEAR THE CRITICAL VALUE AND
ISING TRANSITION

For convenience of the reader we recall the definition of Lyapunov
dimension (see, e.g., ref. 20). Let [Lj ]N

j=1 denote the Lyapunov exponents
of the system in decreasing order, and we assume that Lj{0 for all j. The
Lyapunov dimension dl is set equal to 0 if Lj<0, j=1,..., N. Otherwise we
consider the quantities

Rk=k+
L1+ } } } +Lk

|Lk+1|
, k=1,..., N&1, RN=N

set M=max[ j : L1+ } } } +Lj�0], and define the Lyapunov dimension as
dl=RM . Clearly dl # [M, M+1).

In Fig. 3 we report the plot of the Lyapunov dimension vs = for
N=600. As we argued in ref. 14, the behavior shown in Fig. 3 indicates
that an Ising-type transition can appear for =>0.55.

We have been looking for evidence of an Ising-type transitions by
looking for possible divergences of the mean square magnetization in the

Fig. 3. Lyapunov dimension vs =. N=600.
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stationary state as = A =c . The mean square magnetization is defined as the
limit as N � � of the quantity

NM2(=)=
1
N �\ :

j # ZN

sign xj+
2

�
where ( } ) denotes averaging over the asymptotic stationary state. At the
critical point and beyond such quantity should diverge with N.

In computer similations we take of course an averaging over a sample
consisting of R runs with independent random initial data, after waiting a
``sufficiently large'' transient time. N should be chosen, of course, large
enough so that we are close to the limit.

The main difficulty in simulations comes from the fact that as = A =c , N,
which is an upper bound for NM2(=) grows, and the transient time for
stationary behavior of the sample average also grows, so that one goes
quickly to very large computing times. To tackle this difficulty we resorted
for large = to ``preparing'' the initial state in such a way as to make it ``more
similar'' to the asymptotic stationary state.

Figure 4 shows the behavior of the mean square magnetization near
the critical point. Error bars correspond to one standard error. The data in
Fig. 4 are taken after a ``sufficiently long'' transient time, which depends on
the given =, and is estimated on the basis of the behavior in time of the
mean square magnetization.

As we see, the data indicate divergence for =cr0.58, with critical expo-
nent around 0.9.

Fig. 4. Log�log plot of the mean square magnetization vs =.
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5. BEHAVIOR FOR LARGE =: TUNNELLING TIME

It is interesting to look at the behavior of the ``tunnelling time'' as =
grows to the critical point and beyond. Starting from random positive
initial data we computed the first time for which the average over all N
spins is lower than &0.2 (``tunnelling'' or ``exit'' time). Figure 5 shows the
behavior for N=25 of the average exit time for a sample of size R=200.
Error bars correspond to one standard error.

Looking at significantly larger N is made very hard by the enormous
size of the exit times, especially near and soon after the critical point, which
is made worse by the presence of long tails. We could only find evidence
that the exit time plot shown in Fig. 5 is stable for N between 20 and 40.

The plot in Fig. 5 shows that the tunnelling time falls off rather quickly
after some critical value =

*
>=c , showing that the diffusive coupling becomes

strong enough to drive the system towards a ``more cooperative'' behavior.
The region of the fall-off of the tunnelling time is already outside the

range of Ising-type phenomena. In fact, it is well known(1, 2, 9, 10, 12, 15) that
in the range of strong spatial interactions CML's with symmetric diffusion
coupling show a strong collective behavior. One of the reasons for that is
the symmetry of these systems (see, e.g., ref. 15) which states that any two-
one (two-two) space-time periodic solution for some value of = becomes a
two-two (two-one) periodic solution when = is replaced by 1&=. Thus the
region of space interactions which is symmetric with respect to the point
==1�2 to the one above the space-time chaos region (see Sections 2 and 3
above) is characterised as well by sustained space-time structures. The

Fig. 5. Tunnelling time vs =.
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region of Ising-type transition (when it exists) should be localized some-
where between these two symmetric regions. It is exactly what has been
observed in our computer experiments. It is worth to stress again that this
symmetry is caused by the symmetry of the spatial interactions in the con-
sidered CML.
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